http://www.betsysapts.com

什么是因式分解什么叫做多项式叫做多项式的因

  1、在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做项。

  2、把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

  4、结果最后只留下小括,分解因式必须进行到每一个多项式因式都不能再分解为止;e799bee5baa6e795e98193e58685e5aeb

  5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;

  7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);

  8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。

  :首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括里面分到“底”。

  展开全部若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。

  比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的:0作为多项式时,次数为负无穷大。

  因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,什么是因式分解学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

  ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

  ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”,使括内的第一项的系数是正的.

  ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

  拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

  这类二次三项式的特点是:二次项的系数是1;项是两个数的积;一次项系数是项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

  (6)应用因式:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

  当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

  把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

  如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

  由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

  要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

  对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

  有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

  先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

  将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的e68a84e8a2ade799bee5baa6e795e3535每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

  注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

  首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。什么是因式分解

  因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

  因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括里面分到“底”。现举数例,说明如下,供参考。

  解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

  这里的“负”,指“负”。如果多项式的第一项是负的,一般要提出负,使括内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?

  如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

  证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

  这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。

  解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

  这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,什么是因式分解并使每一个括内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

  由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。

  一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。

  展开全部说得浅显一点。多项式来就是几个单项式的组成。可以包括字母,数字。此多项式中单项式的最高次数即为该源多项式的次数。知看他有几个单项式组成。则为几次几项式。

原文标题:什么是因式分解什么叫做多项式叫做多项式的因 网址:http://www.betsysapts.com/lishipindao/2020/0419/11434.html

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。